Scoring Credit Invisibles: Using machine learning techniques to score consumers with sparse credit histories

November 14, 2017

Over the past months, much has been made about the potential for using machine learning techniques to improve the analysis of risks of consumer lending. Much of the discussion tends to be hypothetical or concerns applications that are outside the realm of credit decisioning. The development of VantageScore 4.0 showcases how these technologies can be harnessed in a way that marries both the latest innovations and current compliance considerations. By using a score that incorporates these techniques, lenders in turn can take advantage of the most recent model improvements with relative ease.

Popular Articles

Consumer FAQ: Benefits of Adding Rent and Utility Data to a Credit File

Advantage of Adding Rent and Utility Data whitepaper

Credit with a Conscience fact sheet

Driving Financial Inclusion with Data and Analytics fact sheet

Credit Invisible No Longer: Examining the relationship between socioeconomic disparities and scoreability